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The finite element method FEMALE [lj] is outlined. Accuracy is much improved when 
the velocity of a finite element is equal to that of a local nonlinear wave. In this paper we give 
a proof of the improvement of accuracy for the discretized equations. The need for node 
annihilation is discussed for a hyperbolic system of equations and a restructuring algorithm of 
finite elements is proposed. ‘cl 1957 Academic Press. Inc. 

I. TNTR~DUCTI~N 

FEMALE [15] is a numerical method for solving a system of evolutionary 
partial differential equations. It was formulated in the frame of the finite element 
method (FEM), since FEM is adaptable to a variety of fluid dynamical systems. A 
characteristic feature of the method is that finite elements can move in space with 
arbitrary velocity and are arbitrary-Lagrangian-Eulerian (ALE). 

Numerical accuracy is much improved when the velocity of the finite elements 
equals that of a nonlinear wave such as a shock wave, contact discontinuity, or 
simple wave for the hyperbolic system of equations. Our previous formulation was 
restricted to the hyperbolic system of conservative form. We shall show here that 
the method can also be applied to a parabolic system of equations. 

The price paid for the adaptive mesh motion is a distortion of finite elements 
which rapidly decreases the numerical accuracy. To remedy this distortion we have 
to reconstruct the finite element layout. 

In Section II the formulation of our method is summarized. In Section III the 
optimal nodal velocity, in view of numerical accuracy, is given and discussed for the 
equations discretized in space. In the final section, annihilation, creation, and 
reconnection of nodes are discussed. Reconnecton usually requires extra storage 
and execution time, so we propose an efficient algorithm of reconnection. 

II. MATHEMATICAL FORMULATION 

Consider the following system of partial differential equations of conservation 
form 

iYU/at + div F = 0, (1) 
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where U is an n-column vector of unknowns. F is a 3-vector function of U, and 
three components of F (FOX, l$, and F, in the Cartesian coordinate system) are 
n-column vectors. An example of such a system of equatons would be three- 
dimensional equations of ideal magnetohydrodynamics [ 1 ] : 

where P and E* are dyadic and 

~=&m~++B~+;p 

P=(p+$B2)I+pvv-BB 

g= [+pu”+$p] v-(vxB)xB 

E*=vB-Bv 

and p, v, p, and B are the fluid density, velocity, pressure, and magnetic field in the 
appropriate units. In this case, U is an eight-component vector (n = 8), and Eq. (1) 
expresses conservations of the mass, momentum, energy, and magnetic flux. 

The physical space, C?, is divided into Ne finite elements, R, (e = 1,2, . . . . Ne). 

so that they are not overlapped, 

R,nRf=O (null) for e #j 

For simplicity, we are considering the simplex model, so the finite elements are line 
segments (lD), triangles (2D), and tetrahedra (3D). At the vertices of the finite 
elements, we locate N nodes. The coordinates of the nodes are denoted by xP 
(,u = 1, 2, . . . . N). Let the nodal values of U(x, t) and F(x, t) be denoted by UP= 
U(xp, t) and Fg = F(x”, t). 

We introduce a set of shape functions (or interpolation functions), 

{4,(X? f), A& t)7 *..7 4N(K t)> 

such that bp’s are linearly independent, and they span the function space which is 
subspace approximate to the space spanned by U(x, t). c$,, is localized in the sense 
that ~Jx”, t) = 6,,, and 4,(x, I) = 0 if x is located outside the elements which include 
xP. Since we are considering the simplex model, 4,(x, t) is a linear function of x in 
the finite elements which include the p th node. 
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The crux of our finite element method is that 4, is not only the function of space, 
X, but also that of time, t, such that #,, satisfies the following hyperbolic equation 

&$,(x, t)/dt + vg .grad d,,(x, t) = 0. 

Equation (2) shows that 4,(x, t) is constant along the characteristics 

(2! 

dx/dt = vg( x, t) (3) 

or the finite elements move with the local velocity v,jx, t). The nodal velocity is 
denoted by v,” =vg(xL1, t). Heretofore, v&x, t) has not been specified. When v,~=O. 
the finite element is Eulerian, and when vg = v (the fluid velocity) it is Lagrangian. 
As we can specify vg arbitrarily, it is arbitraryylagrangian-Eulerian (ALE 1,211 t. 

We approximate U(x, t) by mapping 

T/(x, t) 2: U”(x, t) = i: V(t) qqx, tj, (4) 
)A=1 

where U*(x, r) is approximate to U(x, t). Note that U”(t) is the nodal value of 
Uix, rj and Up(t) = U/*(x1’, t) = U(xP, t). According to Galerkin’s method [33, we 
require that the residual of Eq. ( 1) is orthogonal to all 4,(x, t) (p = 1, 2, 3, . . . . !V): 

c dQ cj,,(SU*/& + div F( U* )) = 0. jsi 
-a 

Substituting Eq. (4) into Eq. (5) we obtain 

$ a(,,,,dU’/dt = jQ dl2 dIJvg.grad U* - div F*) 
B= 1 

= f Rp,;VgY-Sp, 
Y = 1 

where 

P 

S,, = j” dQ I),, div F* 
a 

(7c) 
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and ei is the unit vector along the x,-axis. Note that R,, is a 3-vector with three 
n-column vector components. We approximated F(x, t) and v&x, t) as 

Fjx, t) N F*(x, t) = $ F{‘(r) d,(x, f) (8) 
p=l 

v&x, t) = v&,*(x, f) = 2 v,V) d,ix, Q; (8) 
u=l 

u pr’ 3 P gyp, and fiiUV are geometrical factors, independent of the unknown Ui’(tj and 
analytically evaluated by a standard finite element method [4]. Thus, the system of 
partial diffeential equations (1) is (approximately) equivalent to Eq. (6) and 

dx”/dr = vs”( t) (10) 

which determines the motion of the nodes xP, with prescribed initial conditions. 
Some nodes are located on the boundary of the system. For these nodes, Eqs. (6) 
and (10) are replaced by the boundary conditions. We are now in a position to 
solve Eqs. (6) and (10) if the nodal velocities vgPs are specified. 

II. OPTIMAL NODAL VELOCITY 

The nodal velocity vgP is arbitrary. This arbitrariness introduces freedom into the 
numerical method. We would like to make use of this freedom to improve 
numerical accuracy. If the right-hand side of Eq. (6), 

C, = s dQ dV(vg . grad U - div F) (114 
R 

=xRP,-vpY-SP (lib) 

can be minimized by choosing appropriate v,~‘, then the rate of change of UP 

N 
dV/dt = 1 cP’“C,, 

v=, 
(12) 

where CI”” is an element of the inverse of the matrix (a,,), would also be minimized 
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and the numerical solution of Eq. (6) is easy and efficient. So a reasonable 
requirement for determining the nodal velocity vg P is such that the Euclidian norm 

is minimized, where C= (C,‘, C,‘, . . . . C,T)T and 7 denotes transposition of a 
‘vector. Note that C,, C,, . . . . C,V are n-column vectors. 

In some cases, vgl’ obtained in this way makes C,, = 0. In such cases, Eq. (6) 
reduces to 

so LTV is constant along 

(j-3) 

Hence the solution Lit’ is exact and free from any numerical errors such as 
numerical diffusion or numerical oscillation. The time step size At will be restricted 
by truncation error for the solution of Eq. (14). The square pulse propagation 
problem [S, 151, the solid body rotation problem [6], as we!1 as the Riemann 
problem [7, 15) belong to this kind of problems. Note that these problems are used 
as test problems for numerical schemes and are not trivial since the numerical 
solution of these problems suffers strong numerical oscillations and diffusions for 
most conventional algorithms. 

Jn order to see how we can make C, = 0, we note that C, = 0 is the weak form of 
the Rankine-Hugoniot relation [S]. 

When the discontinuity passes through the node xP, C, is expressed as 

Cp=n.v,L’[U] - [II. FL’], 

where n is the unit normal vector to the surface of discontinuity, and [ ] denotes 
the jump across the discontinuity. Hence if n vg U is the normal speed with which 
the discontinuity moves, then C, = 0. For smooth U, the integrand is 

4p(vg ’ grad CT - div F i = dA1( vp - J) . grad U, 

where 

J = (J,, Jy, J,) = (ZF,/aU, dF,.,W. ~F,,‘FU) i!S) 

is the Jacobian. The Jacobian has n real and distinct eigenvalues for a hyperbolic 
system of equations [9]. If grad U is an eigenstate with eigenvalue 3L, then the 
integrand vanishes when vg = 1. For the constant state, where grad U = div F = 0: 
the integrand is zero. This completes the proof that C, = 0 for the above test 
problems. Pn these problems we have only to find the nodal position xP by solving 
Eq. (14) with vgfi equal to the local velocity of the nonlinear wave at xv. 
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E.ven when C,, does not vanish for any vg p, the nodal velocity which minimizes 
11 Cl1 would be optimal in view of the numerical integration of Eq. (6). If the 
optimal nodal velocity can be found analytically, it should be substituted into C, 
and Eq. (6) integrated numerically. When the optimal velocity cannot be found 
analytically, we have to find it numerically. This is the least squares problem, to 
find vgg for given U’ and F”. 

We would like to see the relation between the optimal nodal velocity obtained by 
the least squares problem and the eigenvalue of the Jacobian matrix (16). We 
restrict ourselves to the hyperbolic equations. The theory of a generalized inverse of 
matrix [lo] gives the least squares solution of equations C, = 0 (p = 1, 2, . . . . N) as 

vgp = 1 R + p”S,, 

+ 1 (16,,6,,,-R+~‘“R,,,).v,,~, (17) 
“> P 

where S,, and R,., are defined in Eq. (7) R +I’” is the MooreePenrose generalized 
inverse of Rp,,, and v@,” is an arbitrary velocity. R +Uv is uniquely determined by the 
following four conditions: 

1 R,, . R +“‘Rl,, = R,,, VW 
P3 1 

c R +PPR pl.R+h’=R+~u 

P. 2 

1 (R +“PRpV)T = c R + YPR,, 

~~R~~.R+p’)T=ER,,.R+nu. (18d) 
I’ P 

The second term of Eq. (17) includes the arbitrary vector vgop, is orthogonal to the 
first terms, and does not contribute to C, since 

c R,, . (I&&,,- R”PRpi) =O. 
1’. P 

The first term of Eq. (17) is the least squares solution of the minimal norm 
c, (v/)*> and the second term shows arbitrariness of the solution for the least 
squares problem. For this vgp, 

Cp= 1 (R,,~R+P”--Ibpp8ps) S,,. 
Y. p 

(19) 

Let the Jacobian J at xp be Jp and assume that Jp has n real and distinct eigen- 
values Akp (k = 1,2. . . . . n). Let the normalized (right) eigenvector corresponding to 
h,’ be rkp: 
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Jfl . rk,, = kkP. r’/, (203. i 

and 
(rkp)T . rkp = 1; (,2Qb) 

where the rk,,‘s form a normalized complete set in the n-vector-valued X-vector 
space. In addition to hyperbolicity, if we assume that J’ is symmetric, then 

Ir’,J T fjp = 6,. (2&I) 

Rp,, can be expressed as 

R,,, = i: ap,,krkv. (21) 
A-= 1 

Then 

and so 

v, k 

(23) 

where 

is a three-by-three weight matrix. If R,,, is an eigenstate, that is, alekrvk = R,,, for 
some k, then C,, = 0 as expected, and Wprk = CpR+I”R,,,, is a symmetric projection 
operator, xp wppk I,t”,, = wCLyk, with the eigenvalues zero and unity. These proper- 
ties come from the definition of R +P in Eqs. (18). For a one-dimensional problem 
with a symmetric P, 

R,,, = 1 apvkrkb 

k 

(26) 

and 



66 ICWIRO KAWAKAMI 

In this case, agP is a weighted sum of nonlinear wave velocities at the nodes around 
xp(, where each weight is proportional to the wave energy of the respective wave. 

We have to be careful in finding the least squares solution of the nodal velocity 
vgP numerically for given R,,, and S, since round-off error or truncation error 
would produce erroneous singular values which must be replaced by exactly zero in 
the course of the computation. For this purpose, we implemented the LSQR 
method [11] in the codes. 

However, numerical solution of the least squares problem to find vb“ requires 
large computer resources, especially in three-dimensional problems. We save com- 
puter storage and execution time by lumping symmetric matrices CI~,, and RP,,, that 
is, by replacing a,, and R,, by 

Pa) 

Wb) 

respectively, so that Eq. (6) is simplified as 

a, dV/dt = C, , (29~) 

where 

C cc =R .v L’-S _ P g P 

Note that &4,(x, t) = 1 for the simplex model. As for the effects of lumping, see 
Ref. [4]. 

Heretofore, we have been concerned with the hyperbolic system of equations, 
where the flux F(x, t) is a function of U(x, t). When F is a function of the 
derivatives of U, the system of equations are not hyperbolic and the foregoing dis- 
cussion cannot be applied. For a parabolic system, our proposal is that the 
derivatives in F are deleted first and vg A’ is determined according to the discussion 
above; then C, is computed in terms of F including the derivatives. Unfortunately 
we are not convinced this algorithm is always best. Sometimes better results may be 
obtained when vgP is determined with F including derivatives. We show numerical 
solutions of parabolic equations in the following section. 

IV. RESTRUCTURING OF FINITE ELEMENTS 

Moving grid algorithms, such as ICED ALE [2], the MFE [12], the self- 
adjusting grid method [13], the free-Langrange method [14], and, FEMALE 
[15], often have troubles caused by an unfavorable mesh deformation. Some of 
these algorithms use rezoning [2, 161 to restructure the grid layout by changing the 
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nodai positions and assign transported values of variables to the vertices or central 
points of the cells, yielding numerical diffusion. Another method of restructuring 
keeps the nodal positions and the nodal values of variables unchanged, but the con- 
nections between nearest neighboring nodes are changed. In this reconnection 
method no numerical diffusions occur, so we recommend reconnection rather than 
rezoning. 

‘4. Node Deletion and Addition 

Before discussing reconnection we consider the discontinuity found in the 
solution of a hyperbolic system of partial differential equations. The simplest, but 
nontrivial, example is the solution of the following equation: 

duj&+u&4/i?.x=O. 130) 

Here U = z(, F= z?/2, and J = U, so the eigenvalue of Jacobian J is 1” = K. Along the 
characteristics 

dxldt = A. (31) 

u is constant. If initiaily u (x, t = 0) = f (x), where df/dx < 0 at some x, say x = I!, 
then K will be multivalued at x = 0 for r > - (df /d-x) ~ I. Mathematical theory, to 
avoid this physically unacceptable multivaluedness, selects a unique solution among 
weak solutions [S, 91, regarding Eq. (30) as a limiting equation of Burger’s 
equation: 

as C+ 0. 
This argument suggests that we should delete colliding nodes just before they 

overtake one another. Figure 1 shows a numerical solution of Eq. (30) under the 
initial condition f(x) being discontinuous. P rp is determined numerically by the 
ISQR method and approximately ugP = (u@ + ’ + K I’ ~ ’ j/2. We see the right moving 
shock eats up the right nodes. Figure 2 shows a numerical result of the same 
equation with f(x) = -a sin kx. In this case, the nodes approach the point x = 0 
and are annihilated there. In either case, we evaluate / i?~/iTJx* / at the overtaking 
nodes and delete one of these nodes which has the larger 1 a2u/ax’ ( . 

Next, we show a numerical solution of Burger’s equation (32) with finite 
0 = lo-* in Fig. 3. vg p is same as in Fig. 1 so we are computing a diffusion equation 
without a convection term in the moving frame. For comparison we take ~~j‘ = 0 in 
Fig. 4. Oscillation appears around the discontinuity and propagates to the left. This 
shows that our choice of the nodal velocity is better than that of the Eulerian 
scheme. 

Addition or creation of nodes would be required on the element of large volume, 
The nodal value U” could be obtained by interpolation. The node addition will not 
be troublesome. 
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FIG. 1. Numerical solution of the hyperbolic equation (30) with the nodal velocity under a discon- 
tinuous initial condition. 

FIG. 2. Numerical solution of the hyperbolic equation (30) with the nodal velocity under a con- 
tinuous initial condition. 
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FIG. 3. Numerical solution of Burger’s equation (31) with the nodal velocity under a discontinuous 
initial condition. 

FIG. 4. Numerical solution of Burger’s equation (31) with vanishing nodal velocity (Eulerian) under 
a discontinuous initial condition. 
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B. Reconnection Algorithm 

Reconnection is to link one node with the nearest neighboring nodes. In a one- 
dimensional problem, the nearest neighboring nodes are obvious and reconnection 
is unnecessary, In two- and three-dimensional problems of N nodes, the “worst” 
algorithm needs about N2/2 operations (comparisons) while the “best” algorithm 
needs about N log, N operations. The ratio N/(2 log,N) of these two operations 
exceeds 50 even for N= 1024. We will present a reconnection algorithm which 
needs .about N log,N operations. 

In order to visualize reconnection, consider a two-dimensional problem and 
attempt to fill the square region with triangular elements. N nodes are randomly 
distributed in the square region except Nb nodes on the boundary (Fig. 5a). The 
counting prdblem [17j tells that the number of triangular elements is 
N, = 2N - Nb - 2. First we sort all N nodes in ascending order of the y-coordinates. 
This sort algorithm should be as fast as quick sort [18]. The ordered N nodes fall 

(a) 

Cc) 

FIG. 

(b) 381 
353 

Cd) 

5. Reconnection algorithm for N=400: (a) distributed nodes; (b) grouping; (c) reconnected -. 
triangular elements; and (d) optimized elements by diagonal thp algorithm. 



FINITE ELEMENT METHOD 

(a) (b) 

FIG. 6. (a) Diagonal flip and (b) boomerang quadriiaterai. 

into \/% group 0 s f about ,,& nodes. Each group must have two nodes on the right 
and the left boundaries, respectively. The members of each group are sorted in 
ascending order of the x-coordinates and are connected with lines (Fig, 5b). Finallyy, 
fill the area between the neighboring two groups with triangles (Fig. SC). Be careful 
not to make the triangles overlapped or inverted. This algorithm is very fast since 
the construction of triangles can be done locally. 

It is known that the regular triangle is favorable for the finite element method. 
Unfortunately some of the triangles resulting from the above algorithm are strong!y 
obtuse. For regularization, the diagonal flip algorithm [ 171 is applied (Fig. 5d). 
The diagonal flip algorithm is illustrated in Fig. 6a. It consists of a procedure of 
eliminating the longer diagonal and inserting the shorter diagonal of the 
quadrilateral to create triangles. In this algorithm we must not flip diagonals for 
boomerang quadrilateral (Fig. 6b). 

We can extend the above algorithms to three-dimensional problems. We assume 
that the three-dimensional region is cubic. First we sort N node2 in the ascending 
order of z-coordinates. Then the ordered N nodes fall into ‘JN groups of about 
N2’3 nodes. These groups correspond to a two-dimensional square although it is not 
planar. After application of the two-dimensional algorithm to make triangles, we fill 
the volumes between neighboring two groups with tetrahedra, with three nodes on 
one group and one node on the other. 

The author would like to express his sincere thanks to Dr. M. Aizawa and Mr. K. Suzuki for their help 
in application and assessment of the algorithm presented here. This work is supported by a Grant-in-Aid 
for Fusion Research of the Ministry of Education, Science and Culture in Japan. 



72 ICHIRO KAWAKAMI 

REFERENCES 

1, K. V. ROBERTS AND D. E. POTTER, “Magnetohydrodynamic Calculations,” in Methods in Com- 
putational Physics, Vol. 9 (Academic Press, New York/London, 19701, p. 340. 

2. C. W. HIRST, A.A. AMSDEN, AND J. L. COOK, J. Compur. Phys. 14, 227 (1974). 
3. J. T. ODEN, Finite Elements of Nonlinear Continua (McGraw Hill, New York/London, 1972). 
4. 0. C. ZIENKIEWICZ, The Finite Element Method, 3rd ed. (McGraw-Hill, New York/London, 1977j. 
5. J. P. BORIS AND D. L. BOOK, J. Comput. Phys. 11, 38 (1973). 
6. S. T. ZALESK, J. Comput. Phys. 31, 335 (1979). 
7. G. A. SOD, J. Comput. Phys. 27, 1 (1978). 
8. A. JEFFERY AND T. TANIUTI, Non-Linear Wave Propagation with its Application to Physics and 

Magneto~~ydrodynamics, (Academic Press, New York/London/Tokyo, 1964). 
9. P. D. LAX, Commun. Pure Appl. Mlzrh. Z, 159 (1954); 10, 537 (19573. 

10. C. R. RAO AND S. K. MITRA, Generalized Imerse of Matrices and irs Applications (Wiley, London, 
1971). 

11. C. C. PAIGE AND M. A. SAUDERS, ACM Trans. Math. Sofiware 8, 43 (1982). 
12. R. J. GELINAS AND S. K. Doss, J. Comput. Phys. 40, 202 (1981). 
13. A. HARTEN AND J. M. HYMAN, J. Comput. PhJ’s. 50, 235 (1983). 
14. M. J. FRITTS, W. P. CROWLEY, AND H. TREASE (Eds.j, Free-Lagrange Method, Lecture Notes in 

Physics Vol. 238 (Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1985). 
15. I. KAWAKAMI, M. AIZAWA, K. HARADA. AND H. SAITO, J. P~QX Sot. Japan 54, 544 (1985). 
16. J. U. BRACKBILL AND W. E. PRACHT, J. Compur. Phys. 13, 455 (1973). 
17. M. J. FRITTS AND J. P. BORIS, J. Compuf. Phys. 31, 173 (1979). 
18. B. W. KERNIGHAN AND P. J. PLAUGER, The Elements of Programming Style (Addision-We&y, 

Reading, MA, 1976). 


